Lesson 4 Breathing LED

Infroduction

In this lesson, we will try something interesting — gradually increase and decrease the
luminance of an LED with PWM, just like breathing. So we give it a magical name - Breathing
LED.

Components

- 1 *Raspberry Pi

-1 * Breadboard
-1*LED

- 1 * Resistor (220Q)

- Jumper wires

- 1 * T-Extension Board
- 1 * 40-Pin Cable

Principle

PWM

Pulse Width Modulation, or PWM, is a technique for getting analog results with digital means.
Digital control is used to create a square wave, a signal switched between on and off. This
on-off pattern can simulate voltages in between full on (3.3 Volts) and off (0 Volts) by
changing the portion of the time the signal spends on versus the time that the signal spends
off. The duration of "on time"is called pulse width. To get varying analog values, you change,
or modulate, that width. If you repeat this on-off pattern fast enough with some device, an
LED for example, the result would be like this: the signal is a steady voltage between 0 and
3.3v controlling the brightness of the LED.

Duty Cycle

A duty cycle is the percentage of one period in which a signal is active. A period is the time
it takes for a signal to complete an on-and-off cycle. As a formula, a duty cycle may be

expressed as:

D:%XIUD%

Where Dis the duty cycle, T is the time the signal is active, and P is the total period of the
signal. Thus, a 60% duty cycle means the signal is on 60% of the fime but off 40% of the time.
The "on time" for a 60% duty cycle could be a fraction of a second, a day, or even a week,
depending on the length of the period.

48

Control signal, u

A
On U

Uonim
{mean value)

off o -
fe———»] I
Duty eyele, ¢ [%]

>
Period, ¥,
~100%
In this experiment, we use this technology to make the LED brighten and dim slowly so it looks
like our breath.

| BI8 1 >|
2200 —L—

GND

Experimental Procedures
Step 1: Build the circuit

L .o ® e e 9 e 8 e e e e P e e e e O e e e SO SE SN
" s e e . e ® 8 ® 8 8 s e e e eSS S eSS e eSS
LI LI ® e s ® 8 8 s 8 0 9 e P e e e S e e e S E G e s e
c 0000 LX) l-u---.-.-...-...--..--.o--.
o) e e L® 8 8 8 6 e 8 8 e e e e e e e e e e e e s e e e e e
v— o m o m
B %Q
o égﬂ?ﬂ% %9 E----------.----------------
= BW=2=mJ G-
I..I.>j 0000 o0 ® ® 8 ® e O P S P T P SO P e OO
LI e ® 6 8 8 8 8 F P E S S S S S S S S E S BB E S
= L e ® 8 8 8 6 8 B O S S S S E e O S e T
e s s e @ LI © ® e o s 8 9o o 995 ® 5 8 e e 0 e e e e e B e e e e
. e s o0 e e e o 0 e s 00w s o o0
L e s o0 e LI s s s LI

"™ 5@ @GND

For C language users:

Step 2: Open the code file
cd /home/pi/SunFounder_Super_Kit_V3.@_for_Raspberry_Pi/C

49

Step 3: Compile the Code

Step 4: Run the executable file above

Code Explanation

pinMode(LedPin, PWM_OUTPUT); // Set the I/0 as pwn output

for(i=0;i<1024;i++){ // i,as the value of pwm, increases progressively during 0-1024.
pwmWrite(LedPin, i); // Write i into the LEDPin
delay(2); // wait for 2ms, interval time between the changes indicates the speed of
breathing.
} // the value of pwm add 1 every 2ms, when the value of pwm increases, the luminance of

the LED increases.

for(i=1023;i>=0;i--){
pwmrite(LedPin, i);
delay(2);
} // the value of pwm minus 1 every 2ms, when the value of pwm decreases, the luminance

of the LED decreases.

For Python users:
Step 2: Open the code file

Step 3: Run

Code Explanation

GPIO.setup(LedPin, GPIO.OUT, initial=GPIO.LOW) # Set LedPin as OUTPUT, initialize the
pin as low level.
pLED = GPIO.PWM(LedPin, 1000) # use PWM in the RPi.GPIO library. Set LedPin as analog
PWM output, the frequency as 1000Hz, assign these configurations to plLed.
pLed.start(@) # Start pLed with 0% pulse width
time.sleep(0.05)
while True:

Increase duty cycle from @ to 100

for dc in range(@, 101, step): # set dc from @ to 100 in for loop. Set step to
cycle.

Change duty cycle to dc

50

pLed.ChangeDutyCycle(dc) # ChangeDutyCycle() function in pLED output
pulse width ©~100% according to the variable dc.

print " ++ Duty cycle: %s"%dc # print information
time.sleep(delay) # it will delay after changing the pulse width for

each time, this parameter can be modified to change the LED’s lighting and dimming

speed.

time.sleep(1)

decrease duty cycle from 100 to ©

for dc in range(100, -1, -step): # the luminance of the LED decreases with each
cycle.

Change duty cycle to dc
pLED.ChangeDutyCycle(dc) # same as the last for loop

print -- Duty cycle: %s"%dc

time.sleep(delay)

Now you will see the gradual change of the LED luminance, between bright and dim.

Summary

Through this experiment, you should have mastered the principle of PWM and how to
program Raspberry Pi with PWM. You can try to apply this fechnology to DC motor speed
regulation later.

51

